<
>

Python numpy中矩阵的基本用法汇总

2019-09-13 11:52:28 来源:易采站长站 作者:于丽

import numpy as np
 
b1 = np.array([True,False,True,False])
res1 = np.nonzero(b1)
print(res1)
# (array([0, 2], dtype=int64),)

对于二维数组b2,nonzero(b2)所得到的是一个长度为2的元组,它的第0个元素是数组a中值不为0的元素的第0个轴的下标,第一个元素则是第1轴的下标,因此从下面得到的结果可知b2[0,0] , n2[0,2]和b2[1,0]的值不为0:

b2 = np.array([[True,False,True],[True,False,False]])
res2 = np.nonzero(b2)
print(res2)
# (array([0, 0, 1], dtype=int64), array([0, 2, 0], dtype=int64))

当布尔数组直接做维下标时,相当于使用由nonzero()转换之后的元组作为下标对象:

b3 = np.arange(3*4*5).reshape(3,4,5)
res3 = b3[np.nonzero(b2)]
print(res3)
'''
[[ 0 1 2 3 4]
 [10 11 12 13 14]
 [20 21 22 23 24]]
'''

3,常见的矩阵运算

3.1,矩阵相乘(*)

就是矩阵的乘法操作,要求左边矩阵的列和右边矩阵的行数要一致

from numpy import *
''' 1*2 的矩阵乘以2*1 的矩阵 得到1*1 的矩阵'''
 
a1 = mat([1,2])
print(a1)
a2 = mat([[1],[2]])
print(a2)
a3 = a1*a2
print(a3)
'''
[[1 2]]
[[1]
 [2]]
[[5]]
'''

3.2,矩阵点乘(multiply)

矩阵点乘则要求矩阵必须维数相等,即M*N维矩阵乘以M*N维矩阵

from numpy import *
''' 矩阵点乘为对应矩阵元素相乘'''
 
a1 = mat([1,1])
print(a1)
a2 = mat([2,2])
print(a2)
a3 = multiply(a1,a2)
print(a3)
'''
[[1 1]]
[[2 2]]
[[2 2]]
'''
 
 
a1 = mat([2,2])
a2 = a1*2
print(a2)
# [[4 4]]

3.3,矩阵求逆变换(.I)

from numpy import *
''' 矩阵求逆变换:求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵'''
 
a1 = mat(eye(2,2)*0.5)
print(a1)
a2 = a1.I
print(a2)
'''
[[0.5 0. ]
 [0. 0.5]]
[[2. 0.]
 [0. 2.]]
'''

3.4,矩阵求转置(.T)

from numpy import *
'''矩阵的转置'''
 
a1 = mat([[1,1],[0,0]])
print(a1)
a2 = a1.T
print(a2)
'''
[[1 1]
 [0 0]]
[[1 0]
 [1 0]]
 '''

3.5,求矩阵对应列行的最大值,最小值,和。

计算每一列,行的和

from numpy import *
'''计算每一列,行的和'''
 
a1 = mat([[1,1],[2,3],[4,5]])
print(a1)
# 列和,这里得到的是1*2的矩阵
a2=a1.sum(axis=0)
print(a2)
'''
[[7 9]]
'''
# 行和,这里得到的是3*1的矩阵
a3=a1.sum(axis=1)
print(a3)
'''
[[2]
 [5]
 [9]]
 '''
# 计算第一行所有列的和,这里得到的是一个数值
a4=sum(a1[1,:])
print(a4)
'''
5
'''

计算最大,最小值和索引

from numpy import *
'''计算每一列,行的和'''
 
a1 = mat([[1,1],[2,3],[4,5]])
print(a1)
'''
[[1 1]
 [2 3]
 [4 5]]
'''
# 计算a1矩阵中所有元素的最大值,这里得到的结果是一个数值
maxa = a1.max()
print(maxa) #5
# 计算第二列的最大值,这里得到的是一个1*1的矩阵
a2=max(a1[:,1])
print(a2) #[[5]]
# 计算第二行的最大值,这里得到的是一个一个数值
maxt = a1[1,:].max()
print(maxt) #3
# 计算所有列的最大值,这里使用的是numpy中的max函数
maxrow = np.max(a1,0)
print(maxrow) #[[4 5]]
# ;//计算所有行的最大值,这里得到是一个矩阵
maxcolumn = np.max(a1,1)
print(maxcolumn)
'''
[[1]
 [3]
 [5]]
'''
# 计算所有列的最大值对应在该列中的索引
maxindex = np.argmax(a1,0)
print(maxindex) #[[2 2]]
# 计算第二行中最大值对应在改行的索引
tmaxindex = np.argmax(a1[1,:])
print(tmaxindex) # 1
              
暂时禁止评论

微信扫一扫

易采站长站微信账号