<
>

Pytorch学习之torch用法----比较操作(Comparison Ops)

2020-06-28 12:01:17 来源:易采站长站 作者:王旭

out(Tensor,可选的) ---- 输出张量

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.le(a, b)
tensor([[1, 0],
  [1, 1]], dtype=torch.uint8)

7. torch.lt(input, other, out=None)

说明: 逐元素比较input和other,即是否input < other

参数:

input(Tensor) ---- 要对比的张量

other(Tensor or float) ---- 对比的张量或float值

out(Tensor,可选的) ---- 输出张量

>>> a = torch.Tensor([[1, 2], [3, 4]])
>>> b = torch.Tensor([[1, 1], [4, 4]])
>>> torch.lt(a, b)
tensor([[0, 0],
  [1, 0]], dtype=torch.uint8)

8. torch.max(input)

说明: 返回输入张量所有元素的最大值

参数:

input(Tensor) ---- 输入张量

>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.1553, -0.4140, 1.8393]])
>>> torch.max(a)
tensor(1.8393)

9. torch.max(input, dim, max=None, max_indices=None)

说明: 返回输入张量给定维度上每行的最大值,并同时返回每个最大值的位置索引。

参数:

input(Tensor) ---- 输入张量

dim(int) ---- 指定的维度

max(Tensor,可选的) ---- 结果张量,包含给定维度上的最大值

max_indices(LongTensor,可选的) ---- 结果张量,包含给定维度上每个最大值的位置的索引。

>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.4067, -0.7722, -0.6560, -0.9621],
  [-0.8754, 0.0282, -0.7947, -0.1870],
  [ 0.4300, 0.5444, 0.3180, 1.2647],
  [ 0.0775, 0.5886, 0.1662, 0.8986]])
>>> torch.max(a, 1)
torch.return_types.max(
values=tensor([0.4067, 0.0282, 1.2647, 0.8986]),
indices=tensor([0, 1, 3, 3]))

10. torch.max(input, other, out=None)

说明: 返回两个元素的最大值。

参数:

input(Tensor) ---- 待比较张量

other(Tensor) ---- 比较张量

out(Tensor,可选的) ---- 结果张量

>>> a = torch.randn(4)
>>> a
tensor([ 0.5767, -1.0841, -0.0942, -0.9405])
>>> b = torch.randn(4)
>>> b
tensor([-0.6375, 1.4165, 0.2738, -0.8996])
>>> torch.max(a, b)
tensor([ 0.5767, 1.4165, 0.2738, -0.8996])

11.torch.min(input)

说明: 返回输入张量所有元素的最小值

参数:

input(Tensor) ---- 输入张量

>>> a = torch.randn(1, 4)
>>> a
tensor([[-0.8142, -0.9847, -0.3637, 0.5191]])
>>> torch.min(a)
tensor(-0.9847)

12. torch.min(input, dim, min=None, min_indices=None)

说明: 返回输入张量给定维度上每行的最小值,并同时返回每个最小值的位置索引

参数:

input(Tensor) ---- 输入张量

dim(int) ---- 指定的维度

min(Tensor,可选的) ---- 结果张量,包含给定维度上的最小值

暂时禁止评论

微信扫一扫

易采站长站微信账号