【全球AI芯片榜单】中国大陆企业无缘前十,华为、寒武纪、地
2018-05-05 20:35:33 来源:网络整理 作者:秋军
英特尔子公司 Movidius 在 2017 年推出视觉处理器(VPU,vision processing unit)Myriad X,是全球第一个配备专用神经网络计算引擎的片上系统芯片(SoC),用于加速设备端的深度学习推理计算。

该神经网络计算引擎是芯片上集成的硬件模块,专为高速、低功耗且不牺牲精确度地运行基于深度学习的神经网络而设计,让设备能够实时地看到、理解和响应周围环境。引入该神经计算引擎之后,Myriad X 架构能够为基于深度学习的神经网络推理提供 1TOPS 的计算性能。
IBM:另辟蹊径,不用冯诺依曼结构
IBM 在 2014 年推出 TrueNorth 芯片,该芯片包括 4096 个核心和 540 万个晶体管,功耗 70mW,模拟了一百万个神经元和 2.56 亿个突触。TrueNorth 芯片模仿人类大脑神经元,不同于通常的冯诺依曼结构。
谷歌:集大成者
谷歌2017 年发布第二代 TPU 芯片,其针对机器学习的训练速度能比现在市场上的图形芯片(GPU)节省一半时间;第二代 TPU 包括了四个芯片,每秒可处理 180 万亿次浮点运算;如果将 64 个 TPU 组合到一起,升级为所谓的 TPU Pods,则可提供大约 11500 万亿次浮点运算能力。
苹果:逐渐自研,功力不必多说
苹果自研的A11 Bionic(仿生)芯片,搭载了64位ARMv8-A架构的6核CPU,同时搭载苹果自研的3核GPU。每秒运算次数最高可达6000亿次,相当于0.6TFlops。

再来看看上榜的三家大陆企业。
华为:第二代AI芯片海思麒麟 980在本季度量产?
2017年9月,华为在德国柏林国际电子消费品展览会(IFA)上正式推出其最新 AI 芯片 “麒麟 970”(Kirin 970)。麒麟 970 采用行业高标准的 TSMC 10nm 工艺,在指甲大小的芯片上,集成了 55 亿个晶体管,功耗降低了 20%,并实现了 1.2Gbps 峰值下载速率。麒麟 970集成 NPU 专用硬件处理单元(寒武纪IP),创新设计了 HiAI 移动计算架构,其 AI 性能密度大幅优于 CPU 和 GPU。相较于四个 Cortex-A73 核心,处理相同 AI 任务,新的异构计算架构拥有约 50 倍能效和 25 倍性能优势。

此外,据业内消息,华为第二代AI芯片海思麒麟 980也将在本季度正式量产,采用台积电 7nm 制程工艺。这款处理器将配置第二代 NPU,在前代的基础上,支持更多的场景应用,NPU 的性能提升 2 倍以上。
寒武纪:最新一代云端 AI 芯片 MLU100问世
昨天,寒武纪重磅发布第三代 IP 产品 Cambricon 1M 和最新一代云端 AI 芯片 MLU100 和板卡产品。MLU100 采用寒武纪最新的 MLUv01 架构和 TSMC 16nm 的先进工艺,平衡模式下的等效理论峰值速度达每秒 128 万亿次定点运算,高性能模式下的等效理论峰值速度更可达每秒 166.4 万亿次定点运算。

MLU100 云端芯片
MLU100 云端芯片不仅可独立完成各种复杂的云端智能任务,更可以与寒武纪 1A/1H/1M 系列终端处理器完美适配,让终端和云端在统一的智能生态基础上协同完成复杂的智能处理任务。
寒武纪去年11月发布了三款智能处理器 IP 产品:面向低功耗场景视觉应用的寒武纪 1H8、拥有更广泛通用性和更高性能的寒武纪 1H16,以及面向智能驾驶领域的寒武纪 1M。
地平线:发布新一代自动驾驶处理器征程 2.0 架构
地平线在去年12月发布了两款AI处理器征程(Journey)和旭日(Sunrise),都属于嵌入式人工智能视觉芯片,分别面向智能驾驶和智能摄像头。这两款芯片,性能可达到 1Tops,实时处理 1080P@30 帧,每帧可同时对 200 个目标进行检测、跟踪、识别,典型功耗只有1.5w。

地平线搭载征程2.0处理器架构的Matrix平台













闽公网安备 35020302000061号