您的位置:首页 > 教程 > Bootstrap3/4 > Keras多线程机制与flask多线程冲突的解决方案

Keras多线程机制与flask多线程冲突的解决方案

2021-05-28 16:52:45 来源:易采站长站 作者:

Keras多线程机制与flask多线程冲突的解决方案,错误,方法,方式,加载,大小

Keras多线程机制与flask多线程冲突的解决方案

易采站长站,站长之家为您整理了Keras多线程机制与flask多线程冲突的解决方案的相关内容。

在使用flask部署Keras,tensorflow等框架时候,经常出现

FailedPreconditionError: Attempting to use uninitialized value batchnormalization_

或者

Tensor Tensor("crf_1/cond/Merge:0", shape=(?, ?, 260), dtype=float32) is not an element of this graph.

使用keras.backend.clear_session()可能会导致前后两处预测结果不一样,因为图发生了变化。以下是解决方案。

graph = tf.get_default_graph()
sess = tf.Session(graph=graph) 
 
def modelpredict(content):
    #keras.backend.clear_session()
    global graph
    global sess
    with sess.as_default():
        with graph.as_default():
            keras.model.predict()

补充:Flask与keras结合的几个常见错误

1、 ValueError: Tensor Tensor(“dense_1/Sigmoid:0”, shape=(?, 1), dtype=float32) is not an element of this graph.

在Flask中使用tensorflow的model,一在界面中调用 model.predict() 就报下面这个错误,不过在单独的 .py 文件中使用却不报错。

ValueError: Tensor Tensor("dense_1/Sigmoid:0", shape=(?, 1), dtype=float32) is not an element of this graph.

添加如下代码可以解决:

import tensorflow as tf
graph = tf.get_default_graph()
model = models.load_model(…………)

# 使用处添加:
global graph
global model
with graph.as_default():
    model.predict()
    # 执行预测函数

但是我当时测试时又报了另一个bug,但是这个bug也不好解决,试了很多方法也没解决,当然最终还是可以解决的,具体解决方式参考第三点。

tensorflow.python.framework.errors_impl.FailedPreconditionError: Error while reading resource variable dense_1/bias from Container: localhost. This could mean that the variable was uninitialized. Not found: Resource localhost/dense_1/bias/class tensorflow::Var does not exist.
[[{{node dense_1/BiasAdd/ReadVariableOp}}]]

后来经过N遍测试后找到了以下两种解决方式,仅供参考:

方法一:

在调用前加载model和graph,但是这样会导致程序每次调用都需要重新加载model,然后运行速度就会很慢,不过这种修改方式是最简单的。

graph = tf.get_default_graph()
    model = models.load_model('./static/my_model2.h5')
    with graph.as_default():
        result = model.predict(tokens_pad)

方法二:

在创建model后,先使用一遍 model.predict(),参数的大小和真实大小一致,这个是真正解决之道,同时不影响使用速率。

# 使用前:
model = models.load_model('./static/my_model2.h5')
# a 矩阵大小和 tokens_pad 一致
a = np.ones((1, 220))
model.predict(a)

# 使用时:
global model
result = model.predict(tokens_pad)

但是在使用后又遇到了 The Session graph is empty…… 的错误即第二点,不过估摸着这个是个例,应该是程序问题。

2、RuntimeError: The Session graph is empty. Add operations to the graph before calling run().

graph = tf.get_default_graph()
    with graph.as_default():
        # 相关代码
        # 本次测试中是需要把调用包含model.predict()方法的方法的代码放到这里

3、tensorflow.python.framework.errors_impl.FailedPreconditionError: Error while reading resource variable dense_1/bias from Container: localhost. This could mean that the variable was uninitialized. Not found: Resource localhost/dense_1/bias/class tensorflow::Var does not exist.[[{{node dense_1/BiasAdd/ReadVariableOp}}]]

这个错误呢,也是TensorFlow和Flask结合使用时的常见错误,解决方式如下:

from tensorflow.python.keras.backend import set_session
# 程序开始时声明
sess = tf.Session()
graph = tf.get_default_graph()

# 在model加载前添加set_session
set_session(sess)
model = models.load_model(…………)

# 每次使用有关TensorFlow的请求时
# in each request (i.e. in each thread):
global sess
global graph
with graph.as_default():
    set_session(sess)
    model.predict(...)
————————————————

4、 Can't find libdevice directory ${CUDA_DIR}/nvvm/libdevice. This may result in compilation or runtime failures, if the program we try to run uses routines from libdevice

设置一下XLA_FLAGS指向你的cuda安装目录即可

os.environ["XLA_FLAGS"]="--xla_gpu_cuda_data_dir=/usr/local/cuda-10.0"

以上为个人经验,希望能给大家一个参考,也希望大家多多支持易采站长站。

以上就是关于对Keras多线程机制与flask多线程冲突的解决方案的详细介绍。欢迎大家对Keras多线程机制与flask多线程冲突的解决方案内容提出宝贵意见

微信扫一扫

易采站长站微信账号