站长网_站长创业_站长主页_站长之家_易采站长站

会员投稿 投稿指南 站长资讯通告: Python基于pyecharts实现关联图绘制
搜索:
您的位置: 主页 > 教程 > 脚本教程 > python > » 正文

Python基于pyecharts实现关联图绘制

来源: 易采站长站

生活中有很多需要用到关联图的地方,至少我认为的是这样的图:https://www.echartsjs.com/examples/zh/editor.html?c=graph-npm

我是在使用Word2Vec计算关联词的余弦距离之后,想要更好的展示出来的时候,遇到的这种情况,就做了下拓展。

画图的步骤主要分为:

1. 将距离数据(或者相关数据)读入;

2. 按照一定的格式和参数将数据保存为json字符串;

3. 根据json串,绘制关联图。

具体而言,主要是:

<1>. 首先有一批数据,如图所示:

<2>. 导入所需要的包

import json
import pandas as pd
import random
import copy

<3>. 产生颜色随机值的函数

# 随机颜色
def randomcolor_func():
  color_char = ['1','2','3','4','5','6','7','8','9','A','B','C','D','E','F']
  color_code = ""
  for i in range(6):
    color_code += color_char[random.randint(0,14)] # randint包括前后节点0和14
  return "#"+color_code

<4>. 生成随机坐标

# 随机坐标
#生成随机数,浮点类型
def generate_position(n):
#  n = 10
  for i in range(n):
    x = round(random.uniform(-2000, 2000), 5) #一定范围内的随机数,范围可变
    y = round(random.uniform(-2000, 2000), 5) #控制随机数的精度round(数值,精度)
  return x, y

<5>. 生成json格式的节点数据

def create_json(data, weights):
  # 自定义节点
  address_dict = {"nodes":[], "edges":[]}
  node_dict = {
     "color": "",
     "label": "",
     "attributes": {},
     "y": None,
     "x": None,
     "id": "",
     "size": None
    }
  edge_dict = {
     "sourceID": "",
     "attributes": {},
     "targetID": "",
     "size": None
    }
  
  # 给节点赋值
  for ii in range(len(data)):
    for jj in range(len(data.iloc[ii])):
      # node,"attributes"属性可自行设置
      node_dict[r"color"] = randomcolor_func()
      node_dict[r"label"] = data.iloc[ii, jj]
      x, y = generate_position(1)
      node_dict[r"y"] = y
      node_dict[r"x"] = x
      node_dict[r"id"] = data.iloc[ii, jj]
      node_dict[r"size"] = int(weights.loc[data.iloc[ii, jj]])
      
      tmp_node = copy.deepcopy(node_dict)
      address_dict[r"nodes"].append(tmp_node)
      
  for ii in range(len(data)):
    for jj in range(1, len(data.iloc[ii])):    
      # edge
      edge_dict[r"sourceID"] = data.iloc[ii, 0]
      edge_dict[r"targetID"] = data.iloc[ii, jj]
      edge_dict[r"size"] = 2
      
      tmp_edge = copy.deepcopy(edge_dict)
      address_dict["edges"].append(tmp_edge)
  
  return address_dict

<6>. 主函数生成json数据

if __name__ == '__main__': 
  # read data
  data = pd.read_excel(r'test_josn_data.xlsx', 0)
  
  weights = pd.DataFrame({"词频":[100, 40, 30, 20, 90, 50, 35, 14, 85, 38, 29, 10]}, 
              index = ['球类','篮球','足球','羽毛球','美食','肯德基','火锅','烤鱼','饮料','可乐','红茶','奶茶']) #建立索引权值列表
  
  address_dict = create_json(data, weights)
  
  with open("write_json.json", "w", encoding='utf-8') as f:
    # json.dump(dict_, f) # 写为一行
    json.dump(address_dict, f, indent=2, ensure_ascii=False) # 写为多行
            
最新图文资讯
1 2 3 4 5 6
易采站长站 - 联系我们 - 广告服务 - 友情链接 - 网站地图 - 版权声明 - 人才招聘 - 帮助 -